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Abstract
With the development of social networking services, social
influence analyses, as well as the influence maximization
tasks, have attracted wide attention in both academia and
industry. Traditional studies mainly focus on simulating pro-
cess of influence spread. However, two basic functions of
social spread, i.e., information propagation and information
adoption have not been clearly distinguished. Usually, as in-
formation adoption could be even more significant for infor-
mation publishers in application scenarios, more comprehen-
sive analysis for effect of adoption is urgently required. To
that end, in this paper, we propose a novel framework to gen-
erally describe social spread, in which information adoption
process is separately formulated as random events. Along
this line, when we apply this framework to the information
adoption maximization task, with proving that the adoption
maximization problem is NP-hard and submodular, we fur-
ther design a polling-based algorithm to achieve an effective
approximation. Extensive experiments on four real-world
data sets demonstrate the effectiveness and efficiency of pro-
posed algorithms, which validates that our approach could
better summarize the complete social spread process, and
further support the necessity of distinguishing information
adoption from information propagation.
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1 Introduction

Recent years have witnessed the booming of social
network services, where individuals are now connected
in cyber world to share news, ideas and comments.
This new business model not only urges the traditional
broadcasting way to be enriched by efficient social
propagation, but also raises new challenges to manage
and predict information flow. Traditionally, several
models have been proposed to simulate the information
propagation process, such as the Independent Cascade
(IC) Model [8], Linear Threshold (LT) Model [15],
in which each node could be simply summarized as
“active” or “inactive”. In these models, active nodes,
i.e., the nodes who receive the information, can be
viewed as adopting the new information simultaneously.
Along this line, the Influence Maximization problem
has been proposed to achieve the maximum information
propagation with limited “seed nodes”, and further
support extensive applications in viral marketing [24],
authority mining [20] and decision making [21], etc.
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However, though extensive efforts have been made,
these information diffusion models above, for some ap-
plication scenarios may still fail to reflect the complete
process of social spread. Specifically, people who prop-
agate the information may not necessarily adopt it.
The following example may intuitively explain this phe-
nomenon in detail.

Motivating Example: Cathy organized a char-
ity party and tweeted the invitation. Her friend Irene
retweeted this message, but she had no time to at-
tend. On the contrary, another friend Abel, though not
retweeted the message, finally participated the party.

In this case above, Irene acted as the informa-
tion channel without participation (adoption), while
for Abel, participation happened without information
spread (propagation). under these circumstances, the
step of information propagation (e.g., retweeting),
and information adoption (e.g., party attendance)
should be treated separately. This phenomenon could
be reasonable especially in interest-sensitive social net-
work [22], where information propagation may not def-
initely lead to adoption if not attractive enough.

Unfortunately, current techniques may fail to distin-
guish these two basic functions of information spread.
In the perspective of social spread in some traditional
models, only the information propagators (e.g., Irene)
will be treated as “activated”, but not the information
adopters (e.g., Abel). This might be unreasonable as
participation could be more significant for event orga-
nizers. Thus, more comprehensive analysis is urgently
required to describe complete social spread process.

To that end, in this paper, we propose a novel
framework to generally describe information propaga-
tion and adoption process. Further, for the Informa-
tion Adoption Maximization task, we design a polling-
based algorithm: obtaining the nearly optimal approx-
imation factor of (1 − 1/e − ε) with at least (1 − 1/n)
probability, in time O(knm log n · OPT−1ε−2). Exten-
sive experiments on four real-world data sets demon-
strate the effectiveness and efficiency of our algorithm,
which validates the potential of our framework in so-
cial spread simulation, and also support the necessity
of distinguishing information adoption. Specially, the
technical contributions can be summarized as follows:

• We distinguish two basic functions of social spread
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i.e., information propagation and adoption, and
then explore the value of adoption for better mea-
suring the effect of information spread. Also, a
novel framework is proposed to generally describe
spread process.

• We propose the “Adoption Maximization” task
based on our framework, and prove that this prob-
lem is NP-hard and submodular under the IC
model. We also show the computation of informa-
tion adoption under the IC model is #P-hard.

• We design a novel randomized algorithm to deal
with the Adoption Maximization task, and theo-
retically prove the approximation within certain ex-
pected time. Experiments on real-world data sets
verify the performance of proposed algorithm.

2 Related Work

Generally, researches on social spread analysis could
be roughly divided into two classes, namely (1) social
spread modeling task and (2) influence maximization
task with its variants.

For the information diffusion modeling, large efforts
have been made on simulating the spreading dynam-
ics, such as Independent Cascade (IC) model, Linear
Threshold (LT) model, continues time IC model [3], Lin-
ear model [13] and [23]. Usually, to ease the modeling,
prior arts like [11] assume that once a user is activated,
she will unconditionally adopt the information. Thus,
process of adoption here is indeed equal to the influence
spread. Correspondingly, some researches argued the
function of social spread, which is essentially treated as
“proxy” [1]. Along this line, [19] distinguished the infor-
mation propagation and the information coverage, and
then proposed a new problem called information cov-
erage maximization. Different from prior arts, in this
paper, we propose a novel concept called information
adoption, and then propose the general framework to
describe the complete process. To be specific, it will
be shown that both influence maximization and infor-
mation coverage maximization are special cases of our
general framework.

For the influence maximization task, since Kempe
et al. firstly proved that influence maximization prob-
lem is NP-hard in both IC model and LT model, and
then proposed a greedy algorithm to approximate the
result [11], lots of works have focused on this issue. For
instance, Chen et al. proved that computing the influ-
ence spread is #P-hard in both IC and LT model [4, 6].
Also, Leskovec et al. applied the “lazy evaluation”
strategy to the greedy algorithm and significantly re-
duced the estimation time [12]. Along this line, [5]
and [9] further improved the performance with elabo-
rate algorithms. At the same time, many heuristic al-

gorithms are proposed, such as [7] and [10] which im-
proved the efficiency with a compromise of the effec-
tiveness. Based on these models, Borgs et al. proposed
a polling-based algorithm, with the same approxima-
tion ratio as the greedy algorithm but with high ef-
ficiency [2]. Besides, Tang et al. further improved
the algorithm and proposed two algorithms that are
much faster than the other influence maximization algo-
rithms [17, 16]. Different from prior arts, in this paper,
we design a polling-based algorithm with a time com-
plexity of O(knm log n ·OPT−1ε−2) for our problem.

3 A General Framework

In this section, we will first define the process of
information propagation and adoption, as well as the
adoption maximization task. Then, we will show some
special cases of our framework. Finally, we discuss the
computational complexity under IC model.

3.1 Framework & Maximization Task To study
the complete process of social spread, first of all, we have
a social network G = (V,E), where V presents the set
of nodes, and E ⊆ V ×V is the set of propagation paths
between nodes, i.e., weighted edges. Write n = |V | for
the number of nodes, and m = |E| for the edges.

Then, a diffusion strategy is required for modeling
the spread. To ease the modeling, the widely-used
Independent Cascade (IC) model is introduced. What
should be noted is that we propose a generic description
of social spread process, thus the IC model could be
replaced by any other diffusion model if needed.

Along this line, assuming that each edge e is asso-
ciated with an activation probability p(e), we propose
the generic framework, in which two stages, i.e., infor-
mation propagation and information adoption will be
separately described as follows:

Propagation Stage. During the propagation
stage, we will simulate the diffusion process according
to the following steps:

• First, we have the source set S as the initial
disseminators of the information.

• Second, each edge in G will be removed with
probability 1 − p(e). Then, we have the resulting
graph g called a “live-edge graph” [11], in which
kept edges called “live-edge”, while removed edges
called “dead-edge”.

• Finally, the node i will be activated, if i can be
reached from S in g, i.e., there exists a directed
path in g that starts from S and ends at i.

Then, we can get an active node set as Active(S).
Adoption Stage. Then, to simulate the adoption

process, each node will get influenced from its activated
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Table 1: Several important mathematical notations
Notations Description
G = (V,E) a social network
n =| V | the number of nodes in G
m =| E | the number of edges in G

GT the transpose graph of G, (u, v) ∈ G iff(v, u) ∈ GT

g a live-edge graph instance of G
Uv the union of a node v and its in-neighbors
Av the set of the active nodes in Uv

S the seed set of social spread
Av |gS the active nodes in Uv , given g and S
Qu

g (S) the information adoption of node u, given g and S
Yg(S) the adoption spread in g when the seed set is S
F (S) expected number of adopt nodes, given S
OPT the maximum F (S) for any seed set S of size k

neighbors, including itself, to adopt the information.
Write N in(u) for in-neighbors of u and Au for a set
of activated nodes that can influence u, i.e., Au =
u ∪ N in(u) ∩Active(S), we have the adoption spread
for given seed set S as:

F (S) = Adopt(S) =
∑
u∈V

[fu(Au)],

Here fu: 2|u∪N
in(u)| → [0, 1] is a metric function,

which estimates the probability of adoption for node
u. Along this line, finally, we formally define the
information adoption maximization problem studied in
this paper as follows:

Problem 1. Information Adoption Maximiza-
tion. Given a graph G = (V,E), a parameter k, and
a set of adoption functions {fv|v ∈ V }, the information
adoption maximization problem aims to finding a seed
set S∗ of k nodes that maximizes the adoption spread,
ie., S∗ = arg max

|S|=k
F (S)

For better illustration, Table 1 lists frequently used
mathematical notations.

3.2 Special Cases of the General Framework
We proposed a general framework of information adop-
tion in previous section. Actually, the existing problem
such as Influence Maximization problem [11] and Infor-
mation Coverage Maximization problem [19] are special
cases of the general framework. Due to the generality of
adoption function fv, we introduce another special case
of the framework.

Influence maximization problem [11] aims to
maximizing the expected number of active nodes. It
assumes that adopt nodes is equal to the active nodes.
The corresponding adopt function fv is

(3.1) fv(Av) =

{
1 if v ∈ Av
0 if v /∈ Av.

Information coverage maximization prob-
lem [19] aims to maximizing the expected number of

both active nodes and informed nodes. It assumes that
both the active nodes and the informed nodes are adopt
nodes. The corresponding adopt function fv is

(3.2) fv(Av) =

{
1 if Av 6= ∅
0 if Av = ∅.

In real life, the adoption, which usually happens
with practical actions, e.g., buy the product or attend
the party, could be more valuable to measure the effect
of social spread. To calculate the adoption spread, we
need a specific functional form of fv. If we look the
consist of Uv, we can find two types of nodes: v and its
neighbors. Thus we can divide fv into two parts: λ(v)
and ρ(v), i.e., fv = λ(v) + ρ(v). Here, λ(v) represents
the contribution from v itself and ρ(v) represents the
contribution from v’s in-neighbors. Specifically, for
λ(v), let λ(v) = θ ∈ [0, 1] if v is active, and λ(v) = 0
if v is inactive. For ρ(v), we assume that neighbors v
independently influence v and ρ(v) = 1 − λ(v) when
all in-neighbors of v are activated. We use αv to
denote the number of activated nodes among v’s in-
neighbors, τv to denote the number of nodes of v’s in-
neighbors and βv to represent the contribution from a
single active in-neighbor of v, i.e., the probability of v’s
adoption if v has an active in-neighbor. When all the
nodes in Uv have been activated, we have λ(v) = θ,
ρ(v) = 1 − (1 − βv)τv = 1 − θ. Thus, 1 − βv = θ1/τv

and ρ(v) = 1− (1−βv)αv = 1− θαv/τv . To this end, we
define a new information adoption function as

(3.3) fv(Av) =

{
1 + θ − θαv/τv if v is active

1− θαv/τv if v is inactive.

3.3 Computational Complexity In this part, we
will show the properties of the framework. Let Uv =
v ∪N in(v), we give an assumption for fv.

Assumption 1. If N ⊂M ⊆ Uv, then fv(M)−fv(N) > 0.

Explanation: If a node has more active in-neighbors,
it will get more influence and the node will has higher
probability adopt the information.

This assumption should be used as the requisite,
since the adoption maximization problem is meaningless
without it, e.g., fv(Av) ≡ 1.

Now, we are ready to prove the properties of the
framework. We first prove that maximizing adoption
spread is NP-hard.

Theorem 3.1. In the IC model, the information adop-
tion maximization problem is NP-hard.

Proof. Consider the restricted class of instances of func-
tion fv where

fv(Av) =

{
1 if v ∈ Av
0 if v /∈ Av.

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited695



The problem of information adoption maximization
in this case is equivalent to the classical problem of
influence maximization defined in [11], which has been
known as NP-hard. The theorem follows.

Luckily, as we will show that F is submodular and
monotone, the greedy algorithm gives a (1 − 1/e − ε)
approximation to the optimal solution.

Theorem 3.2. In the IC model, F is monotone, and
F is submodular iff fv is sumodular.

Proof. The monotonicity of F is straightforward. We
focus on proving that if fv is submodular, F is submod-
ular. We denote the sum of corresponding adoption in
g as Yg(S). Then we have

(3.4) F (S) =
∑

all possible g

Prob(g)Yg(S).

Since a non-negative linear combination of submodular
functions is also submodular, we only need to prove
Yg(S) is submodular for all possible g.

For an arbitrary instance of g and N ⊆M ⊆ V , let
Av |gS be the active nodes in Uv given g and S. Define
the set subtraction: X −Y = {x|x ∈ X ∧x /∈ Y }. Now,
consider the set Av |gN ⋃

u −Av |
g
N , the elements from

this set are the elements in Av |gu that are not ready in
Av |gN . Thus it must contain the elements in Av |gu that
are not ready in Av |gM . It follows that

(3.5) {Av |gM∪u −Av |
g
M} ⊂ {Av |

g
N∪u −Av |

g
N}.

Sine fv is submodular, for any X ⊆ Y ⊆ V , let Z ⊆ X,
we have

(3.6) fv(X ∪ Z)− fv(X) ≥ fv(Y ∪ Z)− fv(Y ).

Let X = Av |gN∪u −[Av |gM∪u −Av |
g
M ], Y = Av |gM ,

Z = Av |gM∪u −Av |
g
M . Since X ∪ Z = Av |gN∪u and

Y ∪ Z = Av |gM∪u, from equation 3.6, we have

fv(Av |gN∪u)− fv(Av |gN∪u −[Av |gM∪u −Av |
g
M ])

≥fv(Av |gM∪u)− fv(Av |gM ).
(3.7)

Combining Equation 3.5, 3.7, Assumption 1, we have

fv(Av |gM∪u)− fv(Av |gM )

≤fv(Av |gN∪u)− fv(Av |gN∪u −[Av |gM∪u −Av |
g
M ])

≤fv(Av |gN∪u)− fv(Av |gN∪u −[Av |gN∪u −Av |
g
N ])

=fv(Av |gN∪u)− fv(Av |gN ).

(3.8)

Equation 3.8 leads to

Yg(M ∪ u)− Yg(M) =
∑
all v

[fv(Av |gM∪u)− fv(Av |gM )]

≤
∑
all v

[fv(Av |gN∪u)− fv(Av |gN )]

= Yg(N ∪ u)− Yg(N).

Thus Yg(S) is submodular for all g. Next we prove
that if F is submodular, fv is also submodular. For a
given node v, assume that Uv = {x1, · · · , xs, · · · , xt, x}
and let N = {x1, · · · , xs}, M = {x1, · · · , xt}. Now, we
only have to prove that there exist a graph G having
fv(M ∪ x)− fv(M) ≤ fv(N ∪ x)− fv(N).

We construct G with vertices set Uv = N ∪M ∪{x}
and x 6= v. For any node u 6= v, u ∈ Uv, let p(u, v) = 0.
Then we have

F (M
⋃
x)− F (M) = fv(M ∪ x)− fv(M) + fx(x),

F (N
⋃
x)− F (N) = fv(N ∪ x)− fv(N) + fx(x).

Since F is submodular, we have fv(M ∪ x) − fv(M) ≤
fv(N ∪ x)− fv(N). Thus fv is submodular.

It has been proved that computing the influence
spread is #P-hard under the IC model [6], we will show
that computing the adoption spread is #P-hard as well.

Theorem 3.3. For any adopt function fv, computing
the information adoption F is #P-hard.

Proof. We will prove the theorem by reducing from the
#P-complete s-t connectedness problem [18]. Given a
directed graph G = (V,E) and two nodes s and t in the
graph, we want to know the number of subgraphs of G
in which s is connected to t. It has been proved that this
problem is equivalent to computing the probability that
s is connected to t when each edge in G is connected
with probability of 1/2 [6].

Given an arbitrary instance of the s-t connectedness
problem. Let {s}=S and p(e) = 1

2 for all e ∈ E, then
let FG(S) denote the information adoption of seed set
S in G. We compute I1 = FG(S). Then we construct

a new graph G
′

by adding a node t′ and a directed
edge (t, t

′
) with the propagation probability pt,t′ = 1.

Now let pG(S, t) denote the probability that node t is
activated by S. Next, we compute I2 = FG′ (S). It is
straightforward to see that I2 = FG(S) + pG(S, t)ft′(t∪
t′) + (1− pG(S, t))ft′(∅). By Assumption 1, ft′(t∪ t′)−
ft′(∅) 6= 0. Thus pG(S, t) = I2−I1−ft′ (∅)

ft′ (t∪t′)−ft′ (∅)
. This means

that s-t connectedness problem must be solvable.

4 A Polling Based Algorithm For Adoption
Maximization

In this section, we develop an efficient randomized algo-
rithm to solve the information adoption maximization
problem. Since we have proved that F is monotone and
submodular, we can solve the problem with a greedy
strategy and can approximate the optimal solution with
a factor of (1 − 1/e) [15]. However, as we have proved
that computing F is #P-hard, we need to estimate F
with Monte Carlo method in the greedy algorithm. The
simulation process is very time consuming, since we
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need to run Monte Carlo simulations to estimate adop-
tion for arbitrary seed set. Recently, a polling-based
algorithm [2] was proposed and was shown to be the
most efficient influence maximization algorithm so far.

Let us review the polling method for computing
influence spread in the IC model. Given a graph G,
a poll is conducted as follows: For each node v, we try
to find out which nodes are likely to activate v. We
run the Monte Carlo simulation from v in GT , where
GT is a transpose graph of G. The set of nodes that is
discovered by the simulation process is called a RR set.
Since the edge (v, u) in GT is the edge (u, v) in G, the
reverse propagation process from v could be used for
finding v’s potential influencers. Here, assume that we
randomly pick M nodes in G and generate M RR sets
by the poll. Let CovR(S) be the number of RR sets that
contain at least one node in S. The key point that makes
the polling method work well is that CovR(S)/M is an
unbiased estimation of I(S), where I(S) is the expected
active nodes in G.

Inspired by the polling method, we design a polling
based algorithm for our task in a non-trivial process.

4.1 An Unbiased Estimation of F(S) In our
problem, to estimate the adoption of a node v, for any
sampled graph g, we need to know the active nodes in
Uv. In Algorithm 1, we first randomly pick v, then for
each node u ∈ Uv, we generate a RR set by the poll.
We call all the generated RR sets by Uv a R, i.e., set of
RR sets. More details could be found in Algorithm 1.

Algorithm 1 RR sampling

1: Initialize L={R1,R2, · · · ,RM }.
2: for λ = 1 to M do
3: Choose a node v from G uniformly at random.
4: Let Uv = {v1, · · · , vj}.
5: for i = 1 to j do
6: Simulate information spread, starting from vi

in GT and keep the edge results (live edges and
dead edges) for the next simulations.

7: Let Rv(vi) be the set of nodes discovered in the
simulation process.

8: Add Rv(vi) to the Rλ.
9: end for

10: end for
11: return L.

To better illustrate, we briefly explain Line 6 to Line
8. Given R, we want to find out nodes that are likely
to exert the influence on v. Since a R is generated
in a single live-edge graph, we need to guarantee the
simulation accordance. In other words, when generate
a R, we can only flip a single coin for an edge. In line 6,
if we toss a coin and get a live-edge e (that is, e ∈ g) at

the i-th simulations, we keep it in the next simulations
(that is, i + 1, · · · , j). Similarly, if we get a dead edge
e′ (that is, e′ /∈ g), we will not include it in the next
simulations. This means that we can generate a R in a
single instance of gT .

As we will show in Observation 1, we can identify
the active nodes in Uv for any seed set S.

Observation 1. For any seed set S and R. Av =
{v1, · · · , vi} iff Rv(v1), · · · , Rv(vi) are all the RR sets
in R that contain at least one node in S.

Proof. Suppose that R can be generated in gT . If a
node vi is active for given S and g, then there exists
a live-path (a simple path consist of live-edges) from
x ∈ S to vi in g, and also a live-path from vi to x in gT .
This means that Rv(vi) contains at least one node in S.

Algorithm 2 RR sampling for triggering adoption
functions

1: Initialize L={R1,R2, · · · ,RM }.
2: for λ = 1 to M do
3: Choose a node v from G uniformly at random.
4: Sample a triggering set Tv for node v.
5: Simulate information spread, starting from Tv in

GT .
6: Let Rλ be the set of nodes discovered in the

simulation process.
7: end for
8: return L.

From observation 1, for a given R, we can identify
the activated nodes in Uv. Now, we can find an
estimation of F (S).

Theorem 4.1. Given L returned by Algorithm 1. For
any seed set S,

(4.9) W (S) =
n
∑
R∈L fv(v1 ∪ · · · ∪ vi)

M
,

is an unbiased estimator of F (S), where
Rv(v1), · · · , Rv(vi) are the RR sets in R that contains
at least one of the nodes in S.

Proof. Given aR and seed set S, from observation 1, we
have Av = {v1, · · · , vi}. Let Qvg(S) be the information
adoption of v in g. We have

Qvg(S) = fv(v1 ∪ · · · ∪ vi),

E[fv(v1 ∪ · · · ∪ vi)] =
∑

all possible g

Prob(g)Qvg(S).
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In Algorithm 1, we choose node v from G uniformly at
random. Thus, we have

E[W (S)] = n ·E[

M∑
λ=1

fv(v1 ∪ · · · ∪ vi)]

= n
∑

all v∈G

Prob(v)
∑

all possible g

Prob(g)Qvg(S)

=
∑

all possible g

Prob(g)
∑

all v∈G

Qvg(S)

=
∑

all possible g

Prob(g)Yg(S) = F (s).

It follows that W (S) is an unbiased estimator of F (S).

Theorem 4.1 gives the unbiased estimation of F (S)
which holds for any adoption function. However, for
some special adoption functions, we have a better idea.
We called these special adoption functions: triggering
adoption functions and formally define it as follows.

• The triggering adoption function Each node v
independently choose a random “triggering set” Tv
according to some distribution over the set Uv. In
each sampled graph g, if Av ∩ Tv 6= ∅, then fv = 1,
i.e., the node v will adopt the information.

Theorem 4.2. Assume that all the adoption functions
are triggering adoption functions. Then for a given
graph G, and L returned by Algorithm 2,

(4.10) W (S) =
n
∑
Ri∈Lmin{|Ri ∩ S|, 1}

M
,

is an unbiased estimator of F (S).

Proof. We can utilize the same technique to prove this
theorem in a similar way as the proof of Theorem 4.1.

4.2 Seed Set Selection With the estimation of
F (S), we can choose the seed set greedily. In each itera-
tion, we add the node that has the largest marginal gain
of adoption. More details can be found in Algorithm 3.

Algorithm 3 optimal seed set selection

1: Initialize a set S = ∅
2: for j = 1 to k do
3: find the node u such that

u = arg max
u∈(V \S)

W (S ∪ u)

4: add u into S.
5: end for
6: return S

In summary, we first use Algorithm 1 or 2 to
generate M Rs and then feeds the L to Algorithm 3,

we finally will get a 1 − 1/e − ε approximate solution
to adoption maximization problem. Next, we will show
the time complexity of our algorithm.

Theorem 4.3. In the IC model, if we can compute
fv in O(1) time, then we can get a (1 − 1/e − ε)
approximate solution with at least (1− 1/n) probability
in O(knm log n/OPTε2) time, where OPT is maximum
adoption for any k size seed set.

Proof. We get a random variable xλ = fv(v1 ∪ · · · ∪ vi)
for each R in Algorithm 1. Thus xλ is a i.i.d random
variables with a distribution on [0,1]. Now, we apply
the Chernoff bound [14] to prove the theorem. Applying
the conclusion of [17], we can get that M in Algorithm 1
should be no less than

(4.11)
2n(1− 1

e
)(log

(
n
k

)
+ logn+ log 2)

OPTε2

for achieving a (1−1/e−ε) approximation of the optimal
solution with at least (1 − 1/n) probability. Since the
time cost of each iteration is O(m), the total time
complexity is O(knm log n/OPTε2).

Theorem 4.3 shows the time complexity which holds
for any adoption function. However, for triggering
adoption functions, we have a better result.

Theorem 4.4. In the IC model, if for any node v,
fv is the triggering adoption function. We can get a
(1−1/e−ε) approximate solution with at least (1−1/n)
probability in O(k(n+m) log n/ε2) time.

Proof. For the triggering adoption functions, let EPT
be the expected number of coin tosses in one iteration,
similar to [17], we have n

mEPT ≤ OPT . Combining
Eq 4.11, the time complexity is O(k(n+m) log n/ε2).

Note that the adoption function Eq 3.1 and Eq 3.2
are triggering adoption functions, which means we only
need O(k(n+m) log n/ε2) time to solve the problem.

5 Experiment

In this section, we first explore the differences among
different adoption functions. Then, we verify the cor-
rectness of the proposed algorithm. Last, we show the
performance of our algorithm.

5.1 Experiment Setup We conduct our experi-
ments on four real network data sets: Wiki-Vote, soc-
Epinions, soc-Slashdot0922 and Weibo. The first
three data sets are publicly available in SNAP plat-
form. The last one (Weibo) is crawled from Weibo.com,
which is a Chinese microblogging website like Twitter.
Table 2 shows the details of the data sets.
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Figure 1: The seed set comparison on four data sets.
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Figure 2: The adoption spread comparison with different approaches on Weibo data set.
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Figure 3: The coverage comparison with different compute methods on four data sets.

Table 2: The statistics of the data set
Data set Nodes Edges Average degree

Wiki 7,115 103,689 14.57
Epinions 75,879 508,837 6.71
Slashdot 82,168 948,464 11.54
Weibo 76,491 9,572,897 125.15

In the experiments, the most popular settings of the
IC model is adopted. The propagation probability of an
edge (u, v) is set to α

indegree(v) , where α = 1.

Algorithms for Comparison : The algorithms
used in the experiments includes:

• HLA is the algorithm proposed in section 4.

• LFG is a greedy algorithm for the adoption max-
imization problem with the lazy forward strat-
egy [12], which is utilized in [19].

Adoption Function f : We compare the differ-
ences among several adoption functions. The adoption
functions we used in the experiments include f1 − f6

(f1, f2, · · · f6). f1 − f4 correspond to Eq. 3.3 with
θ = 0.1, 0.3, 0.5, 0.7 respectively, f5 corresponds to the
influence maximization problem in Eq. 3.1 and f6 corre-
sponds to the information coverage maximization prob-
lem in Eq. 3.2.

Iteration times M : For the algorithms proposed
in Section 4, we need to set the value of parameter M .
Borgs et.al [2] pointed out that we could get a good
enough experimental result by setting M = n lnn. For
Weibo date set, we set M = 1, 000, 000 while f = f5.
Since the number of OPT in f6 is much larger than in
f5, according to Eq. 4.11, we set M = 200, 000. More
details about can be found in Table 3.

Evaluation Metrics: With the output of our
algorithm, we use it as the seed nodes to compute the
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information adoption with Monte Carlo simulations. In
the simulation process, we run MC simulation 10,000
times to get a good estimation of the adoption.

All algorithms are implemented in Java and run on
a Linux server with two 2.0GHz Six-Core Intel Xeon
E5-2620 and 128G memory.

Table 3: Iteration times M
Data set Adoption function M

Wiki,Epinions,Slashdot f1−6 1,000,000

Weibo

f1−4 70,000

f5 1,000,000

f6 200,000

5.2 Seed Set Similarity We run the experiments
to obtain the seed set whose size is 20. To compare the
seed sets obtained by different adoption functions, we
compute the Jaccard similarity coefficient of the seed
sets. The Jaccard similarity coefficient of set A and B

is defined as |A
⋂
B|

|A
⋃
B| . The results are shown in Fig 1.

As shown in Fig 1(a), we can see that the seed sets
selected with f1,2 are similar to each other, the differ-
ence between seed sets selected by f5, f6 and f1 − f4 is
significant. This phenomenon shows the difference be-
tween influence maximization(f5), information coverage
maximization(f6) and adoption maximization(f1 − f4).
For influence maximization problem, we can see that
there is almost no other functions selected the same
seed sets as f5, which proves the difference between
influence maximization and other adoption maximiza-
tion once more. For influence maximization(f5), it fo-
cuses on the message propagation(active nodes), while
other adoption function focus on the influence that the
message receiver get from the network. Thus, there ex-
ist significate differences among them. In Fig 1(d), the
seed set selected by f3,4, f5 have much more similarly
than f1,2, f5. This phenomenon shows that as θ be-
comes large, the active node plays more important role
and the adoption maximization is more similar to the
influence maximization.

5.3 Adoption comparison To show the difference
between influence spread and information adoption, we
report the adoption of the seeds selected by optimizing
the proposed adoption function and influence spread in
a real world application.

In weibo, users can express their feelings about
a message by clicking the “like” button, which is an
orthogonal action of retweeting. It can be viewed as a
kind of adoption, as the probability of a node “likes”
a message is dependent on its active neighbors. In the
experiment, we use the adoption function Eq. 3.3 to
simulate the “like” spread. Here, the “like” probability

functions we used include f1 − f4.
In Weibo date set, for a given seed set, we compare

the coverage of “like” functions(f1−f4) with traditional
influence spread function(f5). Here, the seed sets
are selected by HLA using “like” functions with the
size of seed set ranging from 1 to 20. As shown in
Figure 2(a)(b), there is a huge gap between the coverage
prediction of f1,2 and the influence spread function,
f5. In the meantime, the differences in Figure 2(c)(d)
are relatively smaller. This phenomenon shows that
as θ become larger, the active nodes occupy a large
proportion in “like” nodes. As shown in Figure 2(a), it
is possible to achieve the coverage of “like” nodes even
twice than the classical prediction(f5).

5.4 Effectiveness validation We run tests on four
social networks to obtain information adoption. The
size of seed set ranges from 1 to 30. For the purpose
of demonstrating the correctness of our algorithm, we
use the nodes which were selected by HLA as the seed
nodes and run the Monte Carlo simulations(MC) to get
the approximation of F (S), denoted it by F ′(S). As
shown in Figure 3, we compare the difference between
F ′(S) and W (S)(Eq. 4.10). From the figure, we can
find that the largest difference is only 5‰. It means
that the estimation used in HLA is indeed unbiased,
which guarantees the correctness of the algorithm.

Table 4: Efficiency with f = f3(in seconds)
Data set Wiki Epinions Slashdot Weibo

HLA 586 742 1,822 11,641
LFG 15,334 20,567 49,568 /

Table 5: Efficiency with f = f6(in seconds)
Data set Wiki Epinions Slashdot Weibo

HLA 13 174 204 6700
LFG 881 940 3200 /

5.5 Efficiency Comparison The running times of
different functions (f1 − f4) are almost the same, since
different parameter(θ) settings do not affect the polling
based algorithm. Without loss of generality, we only
report the running time of f3. Table 4 shows the
running time of different algorithms when the size of
the seed set is 20. For triggering adoption functions,
we choose f6, i.e., information converge maximization
functions. Table 4 shows the experimental results.
It is too time-consuming to run the LFG algorithm,
since we need to run full Monte Carlo simulations
to estimate the adoption for arbitrary seed set. To
improve the efficiency of the algorithm, we utilize Java
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multi-thread techniques(20 threads). Even so, we can
only run the LFG algorithm on Wiki, Epinions and
Slashdot date sets. From the table, we can see that
although we use multi-thread for LFG, it is much
slower than HLA. This result shows that the proposed
algorithm indeed outperform the greedy strategy with
lazy forward evaluation.

6 Conclusion

In this paper, we discuss about the two basic functions
of social spread, i.e., information propagation and infor-
mation adoption, which are usually confused as equal in
prior arts. Specially, we propose a novel framework to
generally describe the complete social spread process,
in which information adoption process is separately for-
mulated as random events. Based on the general frame-
work, a new problem called information adoption max-
imization is proposed. Along this line, we first prove
that this problem is NP-hard and the computation of
information adoption is #P-hard in the IC model, and
then design a novel polling-based randomized algorithm
to solve the information adoption maximization prob-
lem. Finally, we prove the proposed algorithm can ap-
proximate the optimal result within certain expected
time. Extensive experiments on four real-world data
sets demonstrate the effectiveness and efficiency of pro-
posed algorithms, which validates the potential of our
framework in social spread simulation.
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