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ABSTRACT
As a major component of strategic talent management, learning
and development (L&D) aims at improving the individual and or-
ganization performances through planning tailored training for
employees to increase and improve their skills and knowledge.
While many companies have developed the learning management
systems (LMSs) for facilitating the online training of employees,
a long-standing important issue is how to achieve personalized
training recommendations with the consideration of their needs for
future career development. To this end, in this paper, we propose
an explainable personalized online course recommender system for
enhancing employee training and development. A unique perspec-
tive of our system is to jointly model both the employees’ current
competencies and their career development preferences in an ex-
plainable way. Specifically, the recommender system is based on a
novel end-to-end hierarchical framework, namely Demand-aware
Collaborative Bayesian Variational Network (DCBVN). In DCBVN,
we first extract the latent interpretable representations of the em-
ployees’ competencies from their skill profiles with autoencoding
variational inference based topic modeling. Then, we develop an
effective demand recognition mechanism for learning the personal
demands of career development for employees. In particular, all the
above processes are integrated into a unified Bayesian inference
view for obtaining both accurate and explainable recommendations.
Finally, extensive experimental results on real-world data clearly
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demonstrate the effectiveness and the interpretability of DCBVN,
as well as its robustness on sparse and cold-start scenarios.
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1 INTRODUCTION
In strategic talent management, learning and development (L&D)
aims at improving the individual and organization performance
through planning tailored training for employees to increase and
hone their skills and knowledge, which is of great importance for
companies to maintain their competitive edges in the fast-pace busi-
ness environments [40]. According to the research reports from the
Association for Talent Development1, U.S. organizations spent $1,296
per employee on L&D in 2018, with an average of 34.1 learning
hours. Therefore, in recent years, more and more companies have
built the learning management systems (LMSs) for facilitating the
online training of employees, which can provide not only large cost
savings, but also an effective way to deliver engaging development
for talents due to the benefits of reach, scale, and timeliness [8].

1https://www.td.org/
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Figure 1: Amotivating example of personalized training rec-
ommendations for employees.

However, along this line, a long-standing challenge is how to offer
the talents with personalized training recommendations.

Different from traditional recommendation scenarios (e.g., movies
or product recommendations), the learning motivation of employ-
ees heavily depends on not only their current competencies but
also their goals of future career development. Figure 1 shows a
motivating example of building a personalized employee training
recommender system. Specifically, based on the skill profiles and
historical course records, we can guess that Alice studied the course
Java Performance Optimization due to the demand of honing exist-
ing skills, while Bob studied From Hadoop to Spark for increasing
his current skill set. Meanwhile, although Cindy has a similar skill
profile to Alice, she made a very different choice of training course,
i.e., Deep Learning in NLP, which is far away from her existing
competencies. This might be because she wanted to master skills
in a new field for achieving her future career goal. Therefore, it is
critically important to simultaneously consider the current compe-
tencies and the career development demands of employees for the
recommendation. Also, in the educational domain, interpretable
models play an important role in learning and progress, designing
of better instruction, and possibly intervention to address individ-
ual and group needs [9, 14, 21]. Consequently, it is vital to provide
explanations on the recommendation results. Moreover, we usually
have to face extreme data sparseness and cold-start problems on
the LMS. Meanwhile, the skill profiles may not completely reflect
employees’ skills and contain both fine-grained and coarse-level
skill labels. It is very challenging to learn true competencies and
the demands of employees from such noisy and sparse data.

In order to solve the above challenges, in this paper, we propose
a personalized online course recommender system for enhancing
employee training, which jointly models both the current competen-
cies and the career development demands of employees. Specifically,
the recommender system is based on a novelly-designed end-to-
end hierarchical framework, namely Demand-aware Collaborative
Bayesian Variational Network (DCBVN). Considering that the orig-
inal skill profiles may be sparse and ambiguous, they could not be
readily utilized. Thus, in DCBVN, we first extract the latent inter-
pretable representations of employees’ competencies from their
skill profiles with autoencoding variational inference based topic
modeling [34]. In this way, the auxiliary skill information helps us
deepen the understanding of employees and hence, alleviate the
sparsity and cold-start problem. Then, by exploiting the observed
course records and collaborative learning behaviors, we develop an
effective demand recognition mechanism for learning the personal

(a) User perspective (b) Course perspective

Figure 2: Distributions of the number of learning records.

demands of career development. Each dimension of both the latent
competence and demand variable represents an interpretable skill
topic in reality. Finally, the most appropriate training courses are
recommended through an adapted collaborative filtering algorithm.
All the above processes are integrated into a unified Bayesian col-
laborative filtering way to make sure both the recommendation
accuracy and explainability at the same time. Extensive experimen-
tal results on real-world data clearly demonstrate the effectiveness
and the interpretation power of DCBVN framework, as well as its
robustness on sparse and cold-start scenarios.

2 DATA DESCRIPTION
In this section, we will introduce the real-world dataset exploited
in this paper. Specifically, our dataset DLearner consists of two
main components, namely learning records and skill profiles of
employees, which are provided by a major high tech company in
China. Note that, all of the sensitive information in the dataset has
been removed or anonymized for privacy prevention purpose.

Learning records. In the dataset, the learning records were col-
lected from the LMS for employee training. Most courses are in the
form of videos and slides. Different from student education, courses
on the LMS usually focus on specific job skills. Thus, there is usually
no clear sequential relationship (i.e., without course dependency)
among the courses on the LMS. One can choose and study any
course on the website of LMS without special restriction.

Specifically, the learning records were collected from May 2016
to August 2019, containing 30,662 users and 8,693 courses. Firstly,
we need to exclude the noisy records that users only click the online
course but not spend time learning. Consequently, only when a
user had studied more than half part of the video or slides, we
considered it as a valid record. In this way, we can represent the
entire learning records in the form of 0/1 rating matrix, where 1
means the valid record and 0 otherwise. There are totally 714,091
valid records in the DLearner dataset. Therefore, we can find that
learning records are quite sparse as only 0.27% of the rating matrix
entries contain valid records. Figure 2 shows the distributions of the
learning records from the user and course perspectives, respectively.
It can be observed from Figure 2 that most courses were studied by
a small number of users while the long tail effect is quite obvious
in the distribution from course perspective.

Skill profiles. In the dataset, we also have a detailed skill profile
for each employee, which indicates the professional job skills the
employee has already mastered before online training. Specifically,
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Figure 3: Distributions of the number of different job skills.

there are totally 6,504 unique job skills in the DLearner dataset. Be-
sides, the employees are classified into different groups according to
their departments and job positions in our dataset. There are totally
557 departments and 5 job positions (i.e., Technology, Product, User
Interface, Manager and Others). To show more statistical charac-
teristics of the skill data, Figure 3 presents the distributions of the
number of the employees’ skills from user and skill perspectives,
respectively. We can see that the numbers of users with respect
to the different numbers of skills show the double crest variation.
The average number of skills per user mastered is 63.94. However,
on the other hand, the data is quite sparse from the skill perspec-
tive. It is mainly because that the profile data contains both quite
fine-grained and coarse-grained skill labels at the same time. As
a result, some of the skill labels may have similar meanings but
different names. Other skill labels may belong to contain relation-
ships. Moreover, it is likely that the skills of each employee are not
completely recorded in the profile data. Consequently, about 75%
skills can only be found in less than 10 users’ profiles in our dataset.

Based on the above, data sparsity and skill ambiguity raise great
challenges to the design of the recommendation algorithm. Directly
using the primary skill labels is improper. It is necessary to propose
an appropriate approach to extract the effective competency repre-
sentations from the high-dimensional and intensive noise data.

3 TECHNICAL DETAILS
In this section, we will introduce the technical details of our pro-
posed DCBVN framework.

3.1 DCBVN Framework
Following the famous latent factor models (LFMs) [27, 42], we
suppose that the process of users selecting courses is influenced by
two perspectives, i.e., user demand perspective and course property
perspective. Hence, we represent the user i by a latent variable
ui ∈ RK and course j by a latent variable vj ∈ RK in a shared
low-dimensional space with dimension K . Then the rating ri j of
user i on course j is drawn from the Normal distribution centered
at the inner product of the two latent variables:

ri j ∼ N(uTi vj , c
−1
i j ), (1)

where ci j is the precision parameter. It is usually set higher when
ri j = 1 than when ri j = 0 (ci j = a if ri j = 1, ci j = c if ri j = 0, a >>
c) [42, 44], indicting we have more confidence on the rating when

genWw

v

infW

w iX

iX

ijR jvis

c
jX

i j

Figure 4: The graphical model of DCBVN.

ri j = 1, since ri j = 0 means the user may either be uninterested or
unaware of the course.

Then, we put the Normal distribution as the prior of each latent
course variable vj :

vj ∼ N(0, λ−1v I ). (2)

In traditional LFMs, the latent user demand variable ui is also
drawn from the Normal prior like vj . However, according to com-
mon sense, the user skill backgrounds have dominated influences
in the course selection procedure. Comprehending users’ compe-
tency is of great benefit to model their demands. Along this line,
we utilize the latent competency variable si ∈ RK to represent the
competency of user i by building a probabilistic generative progress
using VAE-LDA [34]. Thus, the skill profile xi of user i is generated
through a generative network parameterized byψ :

xi ∼ pψ (xi |si ). (3)

On the other hand, as discussed before, users who have anal-
ogous employee skills and hence have similar latent competency
variables may differ greatly in personal learning preferences de-
pending on their goals of career development. It is inappropriate
to only consider the competency for training course recommend-
ing. We can draw support from historical records to recognize
users’ learning goals. Hence, in this paper, we propose the demand
recognition mechanismG(·) to transform the original competency
variable si into the latent user demand variable ui by considering
both collaborative learning information and personalized employee
competency information:

ui = G(si ). (4)

In summary, Figure 4 illustrates the graphical model of DCBVN
which comprehensively combines the conventional LFM based col-
laborative filtering method with autoencoding variational inference
for topic modeling.
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Figure 5: The network architecture of autoencoding varia-
tional inference based topic modeling.

3.2 Variational Autoencoder Network
In this subsection, we discuss how to extract semantic representa-
tions from the employee skills and build the collaborative network
in Figure 5 for personalized training course recommendation.

3.2.1 Topic modeling of skill profiles. In the literature, topic
modeling algorithm is a quite popular probabilistic generative
model for learning latent and interpretable representations [3, 33,
48]. However, traditional topic models may not perform well on
the sparse data [51]. On the other hand, Variational autoencoder
(VAE) has demonstrated its great inference abilities in many content
embedding tasks, e.g., texts, labels and images [15, 29]. Thus, we
employ VAE-LDA in our framework for constructing a hierarchical
and explainable course recommender system.

Following the classic topic modeling algorithm [3], we assume
every skill profile is generated from a mixture of K topics β =
(β1, ..., βK ). Each topic βk ∈ RM represents a probability distribu-
tion over the entire M skills. For example, in the topic related to
machine learning, skills like “SVM” and “random forest” would have
high probabilities while the probabilities of “product design” and
“market research” would be very small. The sum of the probabilities
of all the skills should be equal to 1 for each topic.

Then the topic proportions θi ∈ RK of user i over the skills are
supposed to obey Dirichlet distribution: θi ∼ Dirichlet(α), where
each dimension represents the proportion of the corresponding
topic. For example, θi = (0.1, 0.3, 0.6) means that the skill profile
is related to the three topics with the proportions (10%, 30%, 60%),
respectively.

Consequently, the skill profile xi = (xi1, ...,xiNi ) with length
Ni for user i can be drawn from the Multinomial distribution:
xin ∼ Multinomial(1, βθi ). Under this assumption, the marginal
likelihood of the skill profile xi can be given by:

p(xi |α, β ) =
∫
θi

( Ni∏
n=1

p(xin |β, θi )

)
p(θi |α )dθi . (5)

The Dirichlet prior in LDA is significant for obtaining inter-
pretable topics [41]. Nevertheless, it is problematic to implement
the reparameterization trick for the Dirichlet distribution so that
incapable to take gradients through the sampling process in VAE.
To solve the problem, we utilize a Laplace approximation to the
softmax basis of Dirichlet prior, which supports unconstrained
optimization of the cost function [24].

Hence, we use si to denote the competency variable and we have
θi = σ (si ), where σ (·) is the softmax function. Each dimension of
si is related to a specific topic in full accord with θi .

Then following the Laplace approximation of the softmax basis
in [12], the off-diagonal elements of the covariance matrix are sup-
pressed withO(1/K), leading to approximately diagonal covariance
matrix for large K . Accordingly, the Laplace approximation p(si )
over the competency variable si can be given as a multivariate
Normal with mean µ and covariance Σ where:

µk = logαk −
1
K

K∑
l=1

logαl ,

Σkk =
1
αk

(1 −
2
K
) +

1
K 2

K∑
l=1

1
αl

. (6)

Recalling that competency variable si is the softmax basis of
Dirichlet prior, we can thereupon approximate the simplex basis
with the logistic normal distribution p(θi |α) ≈ LN(θi |µ, Σ) [17].

3.2.2 Generative process. Now we can present the generative
process for user skill profiles as follows:

(1) For the layer hдen of the generative network:
a. Draw themth column of weight matrixWдen :

Wдen,∗m ∼ N(0, λ−1w IK ).

b. The topic matrix β = σ (Wдen ).
c. Obtain the ith row of hidden state hдen by:

hдen,i∗ = (βθi )T .

(2) For each user i , draw xi from:
xi ∼ Multinomial (Ni , hдen,i∗).

Here, we also take advantage of the softmax basis Wдen of
topic matrix β for the ease of unconstrained optimization. We use
σ (Wдen ) to denote the softmax transformation separately on every
column of weight matrixWдen .

It is noticed that there are two kinds of data collection modes
for skill profile xi in real scenes, depending on whether one skill
label could appear once or multiple times in a list. For the situation
that all the skills only hold at most once in the list per user, the
skill generation follows a multivariate hypergeometric distribution
instead of a multinomial distribution. Fortunately, the multivariate
hypergeometric distribution converges to the multinomial distri-
bution with large skill size [4]. Accordingly, we can still apply the
above generative process for a large dataset in such a situation.

Owing to the above process, we can obtain the explainable com-
petency variable si . However, the course property variable vj still
remains unexplainable. Due to the various sources of online courses,
it may be quite manpower-consuming to collect the labels for each
course. Moreover, it would be much more beneficial for helping
users make decisions if the courses could be labeled with the same
topics as user competency variables. Therefore, we can make use of
the skill profiles of users who have learned the course to represent
the property of this course.

Let xcj and s
c
j denote the skill profile and latent skill variable of

course j, respectively. To construct xcj , we first count the numbers
of occurrences of each skill among users who have learned course j .
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Then we only keep the top e (e is a constant) frequent skills so that
the popular courses would not have much noise skills. As for the
latent skill variable scj , we can transform the original unexplainable
course property variable vj into a suitable latent space to obtain
the explainable vector. Here, we employ the 1-layer MLP for the
transformation process:

scj = σ (W
cvj + bc ). (7)

Then the generative process of course skill profile xcj with length
N c
j can be given by:

xcj ∼ Multinomial (N c
j , βs

c
j ). (8)

Here we share the same topic matrix β with the generative
process of user skill profile to make sure that the topics in both user
and course perspectives have exactly the same meanings.

3.2.3 Demand Recognition. The learned competency variables
are very useful for understanding the employees’ skill backgrounds.
Intuitively, they are also highly relevant to the career development
demands of employees. However, as discussed before, it is obviously
inappropriate and limited to only utilize si for generating the final
demand ui . Supposing there are two technical employees with
similar skill profiles using LMS for online learning. One wants to
become a senior Java programmer, and the other one intends to
transfer to an AI developer. Certainly, they should accept totally
different recommendations to fit their actual demands.

Therefore, we propose a demand recognition mechanism as
shown in Figure 6 to bridge the competency variable si and demand
variable ui by exploiting the historical course records and collab-
orative information. Since each dimension of si represents one of
the K topics, we can model the pattern of demand transformation
on each topic by combining transfer variable dt ∈ RK with si . Here
dt reflects the changes in the proportions of topics. Specifically,
each transfer pattern can be interpreted as one kind of learning
trend. Thenwe have transformedmatrixZi = (zi1, ..., ziT ) ∈ R

K×T ,
where zit = si + dt , supposing there are T patterns.

In order to comprehensively analyze users’ true demands, we
need to measure the relations between each transfer pattern and
users’ real demand by calculating the importance score of every
transfer pattern. Larger importance score ωit would indicate more
critical influence of pattern t on user i . In this way, we are able to
capture the most relevant transfer patterns and pay more atten-
tion to them. In this paper, we propose two ways to automatically
compute the importance score ωi = (ωi1, ...,ωiT ) ∈ R

T , namely
individual-based and group-based importance score.

For individual-based importance score ωi , we only employ the
historical course records of user i to scoop out his/her demands:

ωi = σ (ZTi VRTi∗), (9)

where Ri∗ is the ith row of the course record matrix R. Here we
take advantage of the softmax function to make sure that the sum
of the T patterns’ score is equal to 1.

However, the course records of a single user may be too few to
find his/her real demand, since the data are quite sparse. Therefore,

+ 1 2, , ..., Tdd d

isis

1zi 2zi 3iz 4iz iTz

iu

+

1i
2i 3i 4i

iT

...

Figure 6: The demand recognition mechanism.

we further take the influence of user groups into consideration due
to the common sense that employees doing similar work may share
similar demands of career development. To this end, we first divide
the users into different groups based on their departments and job
positions. Let дi denote the group that employee i belongs to. Then
we compute the group-based record vector R̃i∗ as follows:

R̃i∗ =

∑
f Rf ∗I (дf = дi )

sum
(∑

f Rf ∗I (дf = дi )
) , (10)

where sum(·) denotes the sum of every column of the vector and
I (·) is the indicator function. Here we employ the element-wise
summation function sum(·) to prevent the record vectors of large
groups being far greater than those of small groups. Hence, we
could calculate the grouped-based importance score ωi as follows:

ωi = ρ · σ (ZTi VRTi∗) + (1 − ρ) · σ (ZTi V R̃Ti∗), (11)

where ρ is a balance parameter to adjust the influence from indi-
vidual and user group perspectives.

Finally, by combing the influence of T patterns with the impor-
tance score ωi ∈ RT , we are able to comprehensively analyze users’
true demands. Specifically, the final latent demand variable ui can
be obtained by the weighted summation:

ui = Ziωi =
T∑
t=1

ωit zit . (12)

3.2.4 Inference process. After building the generative model,
we could provide the joint probability of the full data:

p(R, X , X c , V , S ) =
∏
i, j

p(ri j |ui , vj )pψ (xi |si )p(si )p(xcj |vj )p(vj ).

We need to obtain the posterior distribution of the latent vari-
ables to inference the model. Nevertheless, it is difficult to get an
analytical solution. To address this problem, we utilize a popular
approximation, i.e., Stochastic Gradient Variational Bayes (SGVB)
estimator, to construct a stochastic gradient ascent solution for our
proposed framework. Specifically, we realize an inference network
parameterized by ϕ for efficient posterior inference of competency
variable si . The multi-layer perception network (MLP) with L layers
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is chosen as the inference network structure. Thus, the variational
distribution q is parameterized by ϕ and xi :

q(S ) =
∏
i
qϕ (si |xi ) =

∏
i

N(µϕ (xi ), Σϕ (xi )). (13)

Then the inference process can be defined as follows:
(1) For each layer l of the inference network:

a. Draw themth column of weight matrixWl :
Wl,∗m ∼ N(0, λ−1w IKl ).

b. Draw the bias vector bl from bl ∼ N(0, λ−1w IKl )).
c. Draw the ith row of hidden state hl by:

hl,i∗ ∼ N(Siдmoid (hl−1,i∗)Wl + bl , λ
−1
s IK ).

(2) Draw mean and covariance of latent variable by:
µsi = µϕ (xi ) ∼ N(hLWµ + bµ , λ−1s IK ),

Σsi = Σϕ (xi ) ∼ diaд(N(hLWΣ + bΣ, λ−1s IK )).

Draw latent variable si from:
si ∼ N(µsi , Σsi ),

where λw , λs are the hyperparameters and Kl is the number of
columns of the hidden state hl . Besides, λs is often supposed to be
infinite in VAE so that the Normal distribution would degrade to
Dirac delta function [36]. In such a case, VAE could work like other
common neural networks and improve computing efficiency.

With the help of reparameterization trick [31], we could easily
gain a differentiable sampling process of si . Specifically, we draw
sample by ϵ ∼ N(0, I ) and let si = µsi + ϵΣsi .

Thus, the Evidence Lower Bound (ELBO) of our DCBVN frame-
work is formulated as:

L(q) = logp(R |U , V ) + Eq [logpψ (X |S )] + logp(X c |V )

+ logp(V ) − KL(qϕ (S |X ) | |p(S )). (14)

It can be seen that the ELBO is separated into three pieces: pre-
diction loss, reconstruction loss, and prior loss.

First, the prediction loss is frequently utilized in LFMs to maxi-
mize the log-likelihood of records:

logp(R |U , V ) = −
∑
i, j

Ci j
2

(ri j − uTi vj )
2 .

Second, the reconstruction loss measures the generative quality
of skill profiles of users and courses. For user generative process,
in consideration of the intractability of computing expected values,
we employ Monte Carlo sampling from ϵ following Law of the
Unconscious Statistician:

logp(X c |V ) =
∑
j
p(xcj |vj ),

Eq [logp(X |S )] =
∑
i

1
D

∑
d

pψ (xi |s
(d )
i ).

Finally, the prior loss can be viewed as a regularization term:

logp(V ) = −
λv
2

∑
j

∥vj ∥2,

KL(qϕ | |p) =
1
2

∑
i

[
(µ − µsi )

T Σ−1(µ − µsi ) +tr (Σ
−1Σsi ) + log

|Σ |

|Σsi |
− K

]
.

Thus, stochastic optimization methods such as Adam can be used
to operate the ELBO.

3.3 Prediction
Let Y denote the observed data. On the basis of the trained model,
we can make the estimation by:

E[ri j |Y ] = E[ui |Y ]T E[vj |Y ] = E[G(si ) |Y ]T E[vj |Y ]. (15)

For the point estimation, we approximate the prediction as:

r ∗i j = G(E[si ])Tvj , (16)

where E[si ] = µsi , i.e., the mean variable in inference network.
For the cold-start situation, we have no course records for the

new users. However, we can still make recommendations based on
the competency variable si . Moreover, we can also draw help from
user group information to solve the cold-start problem. Specifically,
we adopt the group-based importance score and set the balance
parameter ρ as 0. In this way, we can still make recommendations
like in the normal position. As a result, our DCBVN framework can
greatly alleviate the cold-start problem.

4 EXPERIMENTS
In this section, we demonstrate the effectiveness of our proposed
DCBVN framework from the following aspects: (1) the overall rec-
ommendation performances compared with several state-of-the-art
baselines on normal and sparse scenarios; (2) the analysis on cold-
start scenarios; (3) the parameter analysis and (4) some case studies
to visualize the interpretability of DCBVN.

4.1 Baseline Approaches
To verify the effectiveness of DCBVN, we compare it with several
baseline methods including two traditional models (i.e., WMF and
CTR), four state-of-the-art models (i.e., NeuMF, DeepMF, CDL and
CVAE) and a variant of DCBVN:

• WMF [13]: This is a classic collaborative model using linear
low-rank factorization for recommendation.

• CTR [42]: This is a classic hybrid model, which leverages
LDA for modeling content information and combines it with
traditional collaborative LFM.

• NeuMF [11]: This is a state-of-the-art collaborative model
for implicit feedback, which leverages a multi-layer percep-
tron to learn the user-item interaction function with cross
entropy loss.

• DeepMF [47]: This is a state-of-the-art collaborative model,
which implements matrix factorization with multi-layer per-
ception network.

• CDL [44]: This is a state-of-the-art hybrid recommender
utilizing stacked denoising autoencoder for extracting deep
latent representations.
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Table 1: The overall recommendation performance of differ-
ent approaches in the normal setting.

Methods R@20 R@50 R@100 R@300

WMF 0.1577 0.2026 0.2735 0.4430
CTR 0.2150 0.2900 0.3598 0.4903
NeuMF 0.2178 0.2944 0.3676 0.5154
DeepMF 0.2228 0.2982 0.3632 0.5033
CDL 0.2311 0.3132 0.3867 0.5217
CVAE 0.2401 0.3214 0.3943 0.5273
DCBVN-0 0.2571 0.3478 0.4197 0.5554
DCBVN 0.2668 0.3519 0.4341 0.5840

• CVAE [18]: This is a state-of-the-art hybrid method and
can be viewed as the improved version of CDL, which im-
proves the content representations by applying variational
autoencoder with Bayesian inference.

• DCBVN-O: This is a variant of our proposed DCBVN frame-
work by ignoring the group information of users and only
adopt the individual-based importance score in the model-
ing process. By comparing DCBVN-O with DCBVN, which
adopts the group-based importance score, we can verify the
usefulness of group information.

Among the baselines, WMF, NeuMF and DeepMF only make use
of course records for matrix factorization while all the other meth-
ods employ both record information and skill profile information
for collaborative filtering.

4.2 Evaluation Metric
To measure the performances of recommendation results, we adopt
the widely used evaluation metrics in recommender systems, i.e.,
Recall@P [18, 19, 44]. Recall@P counts the ratio of successfully
predicted items among top-P items to all positive items for each
user as follows:

Recall@P =
number of items that the user likes among the top P items

total number of items the user likes
.

The final Recall result reported is the average value of all users.
Generally, the larger the values of Recall are, the better results we
have. It is noticed that the zero entry in the course record matrix
does not necessarily mean the user dislikes the course, but may be
indeed unaware of the course. Consequently, precision is not so
suitable for measuring performance here [44].

4.3 Experimental Settings
In the experiments, we evaluated and compared the models under
both the normal setting and sparse setting. In the normal setting,
we selected 70% and 10% course records for each user to construct
the training and validation set respectively according to the chrono-
logical order, since it might be inappropriate to use an employee’s
future course selection for training and then recommending during
the testing process. The rest course records composed the test set.
The dataset partitioning in the sparse setting was similar, but we
only chose 30% courses for each user to form the training set.

Table 2: The overall recommendation performance of differ-
ent approaches in the sparse setting.

Methods R@20 R@50 R@100 R@300

WMF 0.1620 0.2034 0.2629 0.4080
CTR 0.1888 0.2551 0.3173 0.4394
NeuMF 0.2045 0.2654 0.3295 0.4740
DeepMF 0.2168 0.2685 0.3329 0.4676
CDL 0.2214 0.2940 0.3603 0.4804
CVAE 0.2201 0.2933 0.3631 0.5080
DCBVN-0 0.2290 0.3208 0.3979 0.5318
DCBVN 0.2449 0.3293 0.4053 0.5435

For all the baseline methods, we set the dimension of latent space
K as 50 for a fair comparison. Following the settings in their papers,
we set the precision parameters ci j as a = 1, c = 0.01 and pretrained
CTR, CDL and CVAE with an LDA, a two-layer SDAE network,
and a two-layer VAE network respectively to get the parameter
initialization. The noise level in CDL was set to be 0.3. Then we
explored the corresponding parameters of all the baselines, such as
regularization parameters, learning rates and other parameters.

In our DCBVN framework, we also set K = 50 and chose the
2-layer MLP network as the inference network architecture for a
fair comparison with baselines. The dimensions of the two layer
were set as 200 and 100 respectively, which is the same setting in
CDL and CVAE. Similar to Li and She [18], we added a balance
parameter λr to adjust the penalty of reconstruction loss with
respect to prediction terms. Then the precision parameter c̃i j could
be set as a = λr ,b = 0.1λr , c = 0.01λr . Thus, tuning the parameter
λr is equivalent to tuning the precision parameter. Besides, the value
of αk in Equation 6 was set as 1/K for each k and the maximum
number e of skills for each course as 200. Finally, we tuned the
value of λv from the candidate set {0.01, 0.1, 1, 10, 100} .

Though using the same user inference network architecture with
CDL and CVAE, we found that DCBVN could still workwell without
the pre-trained network parameters for content embedding. This
might because we performed the stochastic optimization methods
for all the parameters synchronously, while CDL and CVAE opti-
mized the content variables and collaborative variables alternately.
Thus, DCBVN does not necessarily need the pre-training process.

4.4 Experimental Results
4.4.1 Recommendation performance. In this part, we inves-
tigate the performance of DCBVN and baselines in the DLearner
dataset. We evaluate all the baselines in two positions, i.e., normal
and sparse settings.

Table 1 and Table 2 show the recommendation performance re-
sults of all models in the normal and sparse settings, respectively.
It can be observed that our proposed DCBVN method achieves the
best performances in both settings. By comprehensively modeling
the skill backgrounds and personal demands of employees, DCBVN
could outperform CVAE by a margin of 2.67% (a relative boost of
11.12%) in the normal setting and 2.48% (a relative boost of 11.27%)
in the sparse setting when P = 20. Besides, DCBVN-O, i.e., the vari-
ant of DCBVN, also has better performance than other baselines.
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Figure 7: The performance results of DCBVN on cold-start
scenarios.

Normal

Figure 8: The performance of Recall@P with different dif-
ferent values of λr .

DCBVN-O is a little worse than DCBVN, which demonstrates that
user group information is actually beneficial in the modeling pro-
cess. We can also find that DCBVN outperforms DCBVN-O more
in the sparse setting when p = 20 than in the normal setting, since
employing group information is somewhat equivalent to increasing
the data size of each employee’s course records, which alleviate the
sparse problem to some extent. Meanwhile, we can find that the
performances of CVAE are only lower than DCBVN and DCBVN-O,
which demonstrate the embedding ability of variational autoen-
coder. By comparison, CTR, which leverages LDA in its model,
performs not well due to the sparsity of skills. Besides, NeuMF and
DeepMF perform better than CTR and WMF due to the superior
performance of neural networks.

4.4.2 Cold-start scenarios. Cold-start problem is a common hard
problem in recommender systems that new users have no historical
record. It becomes even more serious on the LMS due to the mas-
sive new employees in many modern fast-paced companiese [30].
Without the user-item interactions, many CF methods would fail
to make predictions. In this part, we provide some analysis of our
proposed framework on the cold-start scenarios.

In this subsection, we propose three different approaches to han-
dle the cold-start problem under our framework, namely DCBVN-
C1, DCBVN-C2 and DCBVN-C3. In DCBVN-C1, we only use the
employees’ competency variables for the recommendation, that is,
the latent user variables are exactly the same as the skill variables
of new users. In DCBVN-C2, we place no assumption on different
transfer patterns to calculate the demand variables of each new
user, that is, we let every transfer pattern have the same impor-
tance score. In DCBVN-C3, for each new user, we only employ the
user group information to calculate the importance scores of the
employees, that is, we adopt the group-based importance score and

Normal

Figure 9: The performance of Recall@P with different val-
ues of ρ.

Normal

Figure 10: The performance of Recall@P with different val-
ues of T .

set the balance parameter ρ as 0 in Equation 11. For comparison,
we also provide the result of DCBVN without cold-start restriction.

First, we selected 50% users in the training stage and the rest
users were assumed to be new users. In order to be consistent
with the normal setting, we randomly chose 70% course records
of training users to construct the training set for DCBVN and the
three variants. The rest 30% course records were used for validation.
Then we select 30% course records of new users as the training
set only for DCBVN. Noticed that for DCBVN-C1, DCBVN-C2 and
DCBVN-C3, these data would not be used. The rest 70% course
records of new users compose the test set for all the four methods.
The performance results are shown in Figure 7.

From Figure 7 we can easily find that DCBVN outperforms all the
variants a lot, which clearly demonstrates the necessity of consid-
ering the personal demands of employees for the recommendation.
Even DCBVN-C3 has utilized user group information, it still per-
forms much worse than DCBVN, showing the dominated effect of
individual historical records.

Among the three cold-start variants, it can be observed that
DCBVN-C1 still performs well, which verifies the effectiveness of
our framework even on the cold-start scenario. Besides, DCBVN-C2
performs better than DCBVN-C1, which demonstrates again that
it is improper to directly treat skill variable as the user demand
variable. Finally, we can observe that DCBVN-C3 outperforms the
other two variants. This shows the effectiveness of user group
information even on the cold-start scenario.

4.4.3 Parameter analysis. First we evaluate the parameter λr ,
which represents whether we concentrate more on prediction ac-
curacy or reconstruction error. Figure 8 presents the results for
different values of λr . When λr is small, the penalty of prediction
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Table 3: Case studies on DCBVN based user understanding.

top 3 topics of skills
a. distributed, hadoop, system design, apache,
spark, hive, scheduling, storage, operation

b. products design, product operation, promotion, impact,
planning, scheme, disassembly, data analysis

c. retrieval, data flow, trigger, capture packets,
stability, query, automation, building database

selected courses
a. Information security awareness training
b. From technological backbone to manager
top 3 topics of demands
1. distributed, hadoop, system design, apache,
spark, hive, scheduling, storage, operation

2. business, service, management, guidance,
strategy, organize, examine, implement

3. achieve, dispose, service, system, solution,
develop, platform, workflow, leadership

suggested courses
1. Office network security training
2. Application cases of big data on predictions
3. What are the success factors of a high-tech company
4. Engineering leadership talk: platform governance
5. How to use the tailor-made data storage system
6. Introduction to safety specification
7. The technology platforms in the company
8. Engineering leadership and strategy

loss declines. Thus, the DCBVN framework tends to reduce the ef-
fectiveness of collaborative filtering. Moreover, it requires a larger
iterative number for DCBVN to convergence with small λr . On the
other hand, when λr grows larger, the quality of latent representa-
tions could not remain good due to the overfitting problem.

Then we discuss the influence of balance parameter ρ, which
shows the demand recognition mechanism focusing more on indi-
vidual/group information. Figure 9 presents the results for different
values of ρ. We can observe that when ρ = 0.2, DCBVN gets the
best performance results. It is noticed that ρ = 0.2 does not imply
we pay much more attention to group information than individual
information because we have normalized the group course records
R̃i∗ so that the norm of R̃i∗ is much smaller than the norm of indi-
vidual records Ri∗.

Lastly, we investigate the influence of the number of demand
transfer patterns. We assume that there are T chief patterns in the
practical scenes. With small T , we could not model the demand
transferring process much well. Nevertheless, if T is too large, it
would lead to overfitting. As shown in Figure 10, T = 200 seems to
be an appropriate choice. We can find that our DCBVN framework
is robust for overfitting since DCBVN is inherently a Bayesian
generative model learning the latent distributions rather than the
point estimates of variables.

4.4.4 Case study. In this subsection, we provide the interpretable
insights of the recommendations obtained by our DCBVN frame-
work from both employee and course perspectives.

Employee perspective. Table 3 shows a real user case study
of DCBVN in DLearner dataset. We first present the top 3 topics
of the user’s skills. From Table 3, we can speculate that she might
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Job�categories
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Figure 11: The Euclidean distances between competency and
demand variables of employees in different job categories.

be an R&D engineer since her current skills are mostly related to
data processing and programming. Meanwhile, from the historical
learning records, we can find that she preferred to learn about how
to grow into a manager of the team (course b). Besides, she was also
interested in office privacy and security (course a).

Then we provide the top 3 topics of the demands learned by our
model and the top recommended courses in Table 3. It can be directly
found from the topic 2 and topic 3 that the user demand variable
correctly captures the differences of user’s current competencies
and personal demands. In this way, DCBVN successfully under-
stands her career development goal, i.e., become a good manager.
Thus, DCBVN recommends some courses to enhance her business
horizons (course 2 and 3) and develop her leadership abilities (course
4 and 8). DCBVN also suggests some technical courses (course 5 and
7) to help her improve the current competencies. Besides, course 1
and 6 are recommended due to her demand for information safety
awareness training.

Next, we present some interesting results on the differences in
employees’ skill backgrounds and personal career development
demands. Figure 11 shows the Euclidean distances between compe-
tency and demand variables of employees in different job categories.
The small distance means they mainly choose courses based on
their current competencies while large distance implies the high
impact of various career development demands. The distances of
employees in Technology and Manager categories are quite smaller
than employees in other categories. This may because their ca-
reer development goals are tightly related to their current career
directions. Meanwhile, employees in User Interface and Product cat-
egories usually have a wide variety of learning preferences, which
indicates they are more likely to seek different career developments.

Course perspective. DCBVN is also able to label the courses
with the topics of skills, which is very helpful for users to make
decisions. Especially when the course titles cannot directly reflect
the content, users would be quite confused and most likely miss
the suitable courses. For example, Table 4 presents the top 3 topics
of two real courses in DLearner dataset. If one does not know what
Selenium is, he/she may feel puzzled about the course Exploring
Selenium. However, with the help of our labels learned by DCBVN,
he/she could guess that the course is about an automated testing
Tool (In fact, Selenium is an open-source Web automated testing
tool). Similarly, if one does not know who is Mr. Wu, he/she would
absolutely have no idea about the courseMr.Wu’s experience sharing.
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Table 4: Case studies on DCBVN based course labeling.

Exploring Selenium
a. function test, test tool, continuous integration,
quality assurance, code, coverage rate, review, jenkins

b. debug, compile, shell, programming, sdk, encapsulation,
match, hadoop, open source, reconfiguration

c. product design, redis, encapsulation, http, cache,
spark, com, reviewing, cooperation, sdk, offline

Mr. Wu’s experience sharing
1. management, product, data, business,
business requirements, scheme, service, design

2. plan, innovate, management, data analysis,
put on market, project management, reposition

3. mining, orientation, data analysis, reposition,
trans-department, solution, investigation & research

Actually, Mr. Wu is an excellent grassroots manager in the company
and we can easily infer this from the given topics.

Furthermore, we provide an overall view of the courses inDLearner
dataset to show the interpretability of DCBVN. We first performed
k-means clustering [1] to partition all the 8, 693 courses into 8
clusters according to their latent skill variables {scj , j = 1, ..., 8693}
obtained by DCBVN. Then we utilize the t-SNE algorithm [23] to
transform the original 50-dimensional vector into a 2-dimensional
space for visualization, as shown in Figure 12. We can observe that
cluster 5, 6 and 7 are quite close. Actually, courses in these three
clusters are all technical courses while cluster 5 focuses on underly-
ing architecture and database; cluster 6 focuses on application and
algorithm; cluster 7 focuses on web and mobile devices. Moreover,
cluster 2 and 3 are also very close to and interlocked with each
other in the low-dimensional space. In fact, the courses in these
two clusters are both relevant to product and marketing. Besides,
cluster 1 mainly contains courses about management and cluster 8
is mainly composed of courses helping improve the employees’
personal qualities, such as communication and leadership. Lastly,
cluster 4, which is far away from the other clusters, consists of some
miscellaneous courses without a clear theme.

5 RELATEDWORK
In this section, we first introduce some general recommendation
algorithms and then explainable recommendation systems. Lastly,
we will focus on course recommenders.

General Recommenders. In general recommender, Collabora-
tive Filtering (CF) methods have been regarded as the most popular
and successful technique for mining the relevancy between users
and items from the historical interactions [20, 22]. Among vari-
ous CF methods, the latent factor models (LFMs) [27, 43] are the
most widely used approach due to their advanced recommenda-
tion performance compared with traditional neighborhood based
methods [32]. For example, the probabilistic matrix factorization
(PMF) [27], as a representative LFM, aims to factorize the rating
matrix into the product of user and item latent matrices in a low-
rank space. Furthermore, Wang and Blei proposed an approach to
combine LFM with classic topic models [3] for integrating content
information. Recently, with the successful adoption of deep learn-
ing methods in many fields [14, 50], some researchers focused on

Figure 12: The visualization of DCBVN based course cluster-
ing. (The clusters are distinguished by different colors.)

building advanced hybrid recommendation models to blend LFM
and neural network for collaborative information modeling [45].
For example, Wang et al. [44] exploited the Stacked Denoising
Autoencoders for achieving collaboratively content embeddings
with latent content variables. Furthermore, Li and She [18] utilized
the Variational Autoencoder for modeling content information to
construct a Bayesian hybrid recommendation model.

Explainable Recommenders. There are mainly two types of
methods for constructing explainable recommender systems in the
literature. One is post-hoc method, which chooses to separate the
recommending and interpreting processes and the explanations are
picked from a group of pre-defined templates [39]. The other is
the embedded method, which tried to build a unified model to inte-
grate both the recommending and interpreting processes [5, 26, 46].
The existing embedded methods are mainly based on reviews. For
example, McAuley and Leskovec [26] obtained interpretable tex-
tual labels for latent rating dimensions from product reviews. Be-
sides, Chen et al. [5] introduced an attention mechanism to explore
the usefulness of reviews and produce review-level explanations.
Furthermore, Gao et al. [10] built an explainable deep hierarchy
network with an attentive multi-view learning framework. Chen
et al. [6] designed a hierarchical co-attentive selector to optimize
accuracy and explainability in a joint way.

Course Recommenders. Current course recommender sys-
tems mostly focus on the scenario of student education [2, 49]. For
example, Parameswaran et al. [28] studied the problem of constraint
based course recommendations for students; Vialardi et al. [38]
studied to recommend how many and which courses to study on
the basis of previous students; Thai-Nghe et al. [37] proposed to
predict the student performance with LFM for recommendation;
and Chu et al. [7] proposed to recommend courses on the web with
rule based methods. Recently, some efforts were made to enhance
the learning practices of individuals and organizations in talent
management [25]. For example, Klašnja-Milićević et al. [16] recog-
nized different patterns of learning style and utilized neighborhood
methods for online training recommendations. Srivastava et al. [35]
studied the scenario of industrial training in organizations with
sequence matching and mining.
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Different from the above works, we studied the problem of ex-
plainable personalized training course recommendation with em-
ployees’ career development awareness

6 CONCLUSIONS
In this paper, we proposed a personalized online course recom-
mender system for improving employees’ training and development.
A unique perspective of this system is that we jointly model the em-
ployees’ current competencies and their sustainable career develop-
ment. Specifically, we developed a novel end-to-end Demand-aware
Collaborative Bayesian Variational Network (DCBVN) framework,
which could extract latent interpretable representations from their
skill profiles and then learn the personal demands of career develop-
ment for different employees. Furthermore, we designed an adapted
collaborative filtering algorithm for recommending the most ap-
propriate training courses for employees. Moreover, all the above
processes are integrated into a unified Bayesian inference view.
Finally, we conducted extensive experiments on real-world data
to demonstrated the effectiveness and the interpretation power of
DCBVN, as well as its robustness on sparse and cold-start scenarios.
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